Neler yeni

Foruma hoşgeldin 👋, Ziyaretçi

Forum içeriğine ve tüm hizmetlerimize erişim sağlamak için foruma kayıt olmalı ya da giriş yapmalısınız. Foruma üye olmak tamamen ücretsizdir.

İki Kare Farkı Olan İfadelerin Çarpanlara Ayrılması

  • Konuyu Başlatan Konuyu Başlatan theking
  • Başlangıç tarihi Başlangıç tarihi
T

theking

İki Kare Farkı Olan İfadelerin Çarpanlara Ayrılması

İKİ KARE FARKI OLAN İFADELERİN ÇARPANLARA AYRILMASI
a-b=(a-b).(a+b)

ÖRNEKLER:

1-)4x - 9=(2x-3)(2x+3)

2x - 3

2-)(2a-3) - (a-2)=

=(2a-3) – (a-2)
=[(2a-3)-(a-2)].[(2a-3)+(a-2)]
=(2a-3-a+2).(2a-3+a-2)
=(a-1).(3a-5)

3-)(2x-3)-1=

= (2x-3)-1
=[(2x-3)-1].[(2x-3)+1]
=(2x-3-1).(2x-3+1)
=(2x-4).(2x-2)
=4(x-2).(x-1)

4-)(298-98)-200.392 =16 (1994/ÖSS)
2a
= (298-98)(298+98)-200.392 =16
2a
= 200.396-200.392 =16
2a
=200(396-392) =16
2a
=100.4 =16 a=100.4 a=25
a 16a - b İFADESİNİ ÇARPANLARA AYIRMA

a-b=(a-b) (a + a b+a .b +.....+b )

ÖRNEKLER:

x –y ifadesini çarpanlarına ayırınız

1-) x - y = (x-y) (x +x y+x y+xy +y )olur.

2-) x – y ifadesini çarpanlarına ayırınız.

x – y =(x – y)(x +x y+x y +x y + xy +y ) olur.Ncak ikinci çarpan tekrar çarpanlara ayrılır.Bu soruyu aşağıdaki gibi çözersek daha kolay olur.

x – y = (x ) – (y )

= (x -y )(x +y )

=(x-y)(x +xy+y )(x+y)(x –xy +y )

a + b İFADESİNİ ÇARPANLARINA AYIRMA

a- ) n tek ise a + b=(a+b)(a - a .b+a .b -....+b )’dir.


ÖRNEKLER


1-) a – b ifadesini çarpanlarına ayıralım.

a + b=(a+b)(a – a b +a b –ab + b )

b- )n çift ve n=2 (k Z)
p tek ve tam sayı olmak üzere n=p.t ise

a + b=(a ) +(b ) biçiminde yazarak ayrılır ç4-)TAM KARE OLAN İFADELERİN ÇARPANLARA AYRILMASI

(a+b)=a+2ab+b

(a-b)=a-2ab+b
Tam kare üç terimli ifadelerde,iki terimin kare kökleri çarpımının iki katı,üçüncü(ortadaki) terimi vermektedir.

ÖRNEKLER:

1-)x+4x+4 ifadesi tam kare midir?

x + 4x +4=(x+2)

x 2
2.x.2=4x (ortadaki terim) o halde x+4x+4 tam karedir

2-)2000-4000.1999+1999 işleminin sonucu kaçtır?

2000 1999
2.2000.1999=4000.1999 olduğuna göre

2000-4000.1999+1999=(2000-1999)
=1 olur.
 

Foruma hoşgeldin 👋, Ziyaretçi

Forum içeriğine ve tüm hizmetlerimize erişim sağlamak için foruma kayıt olmalı ya da giriş yapmalısınız. Foruma üye olmak tamamen ücretsizdir.

Tema özelleştirme sistemi

Bu menüden forum temasının bazı alanlarını kendinize özel olarak düzenleye bilirsiniz

  • Geniş / Dar görünüm

    Temanızı geniş yada dar olarak kullanmak için kullanabileceğiniz bir yapıyı kontrolünü sağlayabilirsiniz.

    Kenar çubuğunu kapat

    Kenar çubuğunu kapatarak forumdaki kalabalık görünümde kurtulabilirsiniz.

    Sabit kenar çubuğu

    Kenar çubuğunu sabitleyerek daha kullanışlı ve erişiminizi kolaylaştırabilirsiniz.

    Köşe kıvrımlarını kapat

    Blokların köşelerinde bulunan kıvrımları kapatıp/açarak zevkinize göre kullanabilirsiniz.

  • Zevkini yansıtan renk kombinasyonunu seç
    Arkaplan resimleri
    Renk geçişli arkaplanlar
Geri