T
theking
Misafir
Yüzey Nedir Matematik
İki boyutlu bir çokkatlıya yüzey denir. Daha ayrıntılı bir söyleyişle, (kenarı olmayan topolojik) yüzey, aşağıdaki koşulları sağlayan bir topolojik uzaydır:
Hausdorff'tur;
Herhangi bir noktasının çevresinde öyle bir açık komşuluk bulunabilir ki bu komşuluk R²'nin açık bir alt kümesine homeomorfiktir;
(Kimi tanımlarda) İkinci sayılabilirlik özelliğini sağlar;
(Kimi tanımlarda) Parakompakttır.
Yukarıki tanımda ikinci koşulda R² yerine, üst yarı düzlemi (yani ikinci koordinatları negatif olmayan noktaların kümesi) temsil etmek üzere H² konduğunda, bu tanım, kenarı olan (kenarlı) topolojik bir yüzey tanımına dönüşür. Bu durumda ikinci koşulda homeomorfizma sözcüğünün anlamlı olabilmesi için H² üzerinde bir topoloji bulunması gerekir. Bu topoloji standart olarak R²'den tetiklenen topolojidir.
Kenarı olan bir yüzeyin kenarı olmayandan farklı olarak şu tür noktaları da vardır: noktanın yeterince küçük her komşuluğu H²'de çapı yarı düzlemin en altında oturan bir yarım daireye homeomorfiktir. Noktanın R²'de açık bir bölgeye homeomorfik bir komşuluğu olması söz konusu değildir. Kenarlı yüzeylere birkaç örnek: düzlemde kapalı bir daire, kapalı bir eğriyle çevrelenmiş bir düzlem bölgesi, bir yarıküre (içi boş), açık bir dairesel parçası koparılmış bir simit (yüzeyi).
Bir yüzeyin içinde bir Möbius şeridi varsa (yüzeye gömülebiliyorsa) bu yüzeye yön verilemez denir. İçinde bir Möbius şeridi yoksa böyle bir yüzeye yön verilebilir denir. Yön verilemez yüzeylere birkaç örnek: Möbius şeridi, gerçel izdüşümsel düzlem, Klein şişesi. Bunlardan Möbius şeridi kenarı (bir çember) olan bir yüzeyken diğerleri kenarsız yüzeylerdir.
İki boyutlu bir çokkatlıya yüzey denir. Daha ayrıntılı bir söyleyişle, (kenarı olmayan topolojik) yüzey, aşağıdaki koşulları sağlayan bir topolojik uzaydır:
Hausdorff'tur;
Herhangi bir noktasının çevresinde öyle bir açık komşuluk bulunabilir ki bu komşuluk R²'nin açık bir alt kümesine homeomorfiktir;
(Kimi tanımlarda) İkinci sayılabilirlik özelliğini sağlar;
(Kimi tanımlarda) Parakompakttır.
Yukarıki tanımda ikinci koşulda R² yerine, üst yarı düzlemi (yani ikinci koordinatları negatif olmayan noktaların kümesi) temsil etmek üzere H² konduğunda, bu tanım, kenarı olan (kenarlı) topolojik bir yüzey tanımına dönüşür. Bu durumda ikinci koşulda homeomorfizma sözcüğünün anlamlı olabilmesi için H² üzerinde bir topoloji bulunması gerekir. Bu topoloji standart olarak R²'den tetiklenen topolojidir.
Kenarı olan bir yüzeyin kenarı olmayandan farklı olarak şu tür noktaları da vardır: noktanın yeterince küçük her komşuluğu H²'de çapı yarı düzlemin en altında oturan bir yarım daireye homeomorfiktir. Noktanın R²'de açık bir bölgeye homeomorfik bir komşuluğu olması söz konusu değildir. Kenarlı yüzeylere birkaç örnek: düzlemde kapalı bir daire, kapalı bir eğriyle çevrelenmiş bir düzlem bölgesi, bir yarıküre (içi boş), açık bir dairesel parçası koparılmış bir simit (yüzeyi).
Bir yüzeyin içinde bir Möbius şeridi varsa (yüzeye gömülebiliyorsa) bu yüzeye yön verilemez denir. İçinde bir Möbius şeridi yoksa böyle bir yüzeye yön verilebilir denir. Yön verilemez yüzeylere birkaç örnek: Möbius şeridi, gerçel izdüşümsel düzlem, Klein şişesi. Bunlardan Möbius şeridi kenarı (bir çember) olan bir yüzeyken diğerleri kenarsız yüzeylerdir.