Neler yeni

Foruma hoş geldin 👋, Ziyaretçi

Forum içeriğine ve tüm hizmetlerimize erişim sağlamak için foruma kayıt olmalı ya da giriş yapmalısınız. Foruma üye olmak tamamen ücretsizdir.

[B]Rahimde Yara Dondurma Nasıl Yapılır?[/B] Yara dondurma işlemi, rahimdeki lezyonların tedavisinde kullanılan bir yöntemdir. Bu yöntem, rahimdeki yar

  • Konuyu Başlatan Konuyu Başlatan theking
  • Başlangıç tarihi Başlangıç tarihi
T

theking

Misafir
Çarpanlara Ayırma Kuralları - Çarpanlara Ayırma Kuralları Konu Anlatımı

1. Ortak Çarpan Parantezine Alarak Çarpanlara Ayırma :
Her terimde ortak olarak bulunan çarpan, parantez dışına alınır.
Her terimin ortak çarpana bölümü parantez içine yazılır.

1) Aşağıdaki ifadeleri Çarpanlarına ayırınız.
a) 3a + 3b = 3(a + b) b) 5m – 10mn = 5m (1 – 2)
c) 12x + 9y =3(4x + 3y) d) 3a2b – 2ab2 = ab (3a – 2b)
e) 3ax + 3ay – 3az f) (a – b) x + 3 (a – b)
g) (m – n) – (a + b)(m – n) h) – a – b – x2 (a + b)
ı) x2(p – 3) + ma2 (3 – p) i) 1 – 2x + m (2x – 1)



2. Gruplandırma Yaparak Çarpanlara Ayırma :
Bütün terimlerde ortak çarpan yoksa, terimler ikişer, ikişer, üçer,
üçer guruplandırılır. Gruplar ayrı, ayrı ortak çarpanlarına ayrılır.


2) a) mx + ny + my + nx b) xy – xb – yb + b2
c) x4 – 4 + 2x3 – 2x d) 2x2 –3x – 6xy + 9y
e) x3 – x + 1 – x2 f) x4 – x + x3 – 1
g) ab(c2 – d2) – cd (a2 – b2) h) ac2 + 3c – bc – 2ac – 6 + 2b
ı) mn(zi + y2) + zy (m2 + n2) i) a2b2 + 1 – (a2 + b2)



3. Tam Kare şeklindeki İfadeleri Çarpanlara Ayırma :
Polinom üç terimli ise, ilk ve son terimin kare köklerinin çarpımı nın iki katı ortadaki terimi veriyorsa, bu tam kare şeklinde ifadedir
a2 + 2ab + b2 = (a + b)2, a2 – 2ab + b2 = (a – b)2


3) a) x2 + 4xb + 4b2 b) 4a2 + 12ab + 9b2 c) 4a2b2 – 4abc + c2

4) a) a2b + 8ab +16b3 b) 2m3 – 28m2 +98m c) 4x3y – 12x2y2 + 9xy3



4. İki Kare Farkı Şeklindeki İfadeleri Çarpanlara Ayırma :
Polinom iki terimli , işaretleri farklı, kare kökleri alınıyorsa; Bu
Polinom iki kare farkı biçiminde çarpanlarına ayrılır.
a2 – b2 = (a + b) (a – b)


5) a) 25 – 9a2b2 b) x4 – 1 c) (m – n)2 – (m + n)2

6) a) 18x2 – 2y2 b) 2a2b3 – 32b c) 12x3y – 75xy5

7) a) 9a2 – 6a +1 – b2 b) x2 – 12x + 36 – 4y2 c)16m2 – n2 – 6n – 9

d)1 – x2 – 2xy – y2 e) m2 – n2 – 3m + 3n f) a2 – 25b2 – a + 5b

g) a2 – 4m2 – 12mn – 9n2 h) 9a2 –16m4 – 12axy + 4x2y2



5. İki Küp Toplamı - Farkı İfadeleri Çarpanlara Ayırma:

a3 + b3 = (a + b) (a2 – ab + b2) , a3 – b3 = (a – b) (a2 + ab + b2)


8) a) a3 + 8 b) 8 – m3 c) x3 + 1 d) 27a3 – 64 e) x3a3 + b3

9) a) 81m3 – 3n3 b) 24x3y – 3y c) 2x + 54x4

10) a) (x +y)3 – 8 b) a3 + 8(a - b)3 c) (m – n)3 + 1



6. xn yn biçimindeki polinomları Çarpanlara Ayırma:
11) a) x4 + 1 = (x + 1) (x3 – x2 + x – 1)
b) x4 – 1 = (x2 + 1) (x + 1) (x – 1)
c) x5 + 25 = (x + 2) (x4 – 2x3 + 4x2 – 8x + 16)
d) x5 – 1 = (x – 1) (x4 + x3 + x2 + x + 1

7. Bir Terim Ekleyip Çıkararak Çarpanlara Ayırma:
Verilen İfade uygun bir terim ekleme ve çıkarma yolu ile tam kare
ve iki kare farkı şeklinde çarpanlara ayırma işlemine benzetilir


12) 4x4 + 7x2 + 4 ifadesini Çarpanlarına ayırınız.

4x4 + 7x2 + 4 = 4x4 + 7x2 + 4 + x2 – x2 = 4x4 + 8x2 + 4– x2
= (2x2 + 2)2 – x2
2x2 2 = (2x2 + 2 – x) (2x2 + 2 + x)
2.2x2.2 = 8x2 = (2x2 – x + 2) (2x2 + x + 2)


13) x2 – 6x + 5 ifadesini x’li terimin kat sayısının yarısının karesini
ekleyip-çıkararak çarpanlarına ayırınız.
x2 – 6x + 5 + 32 – 32 = (x2 – 6x + 32) – 32 + 5 = (x – 3)2 – 4
= (x – 3 – 2) (x – 3 + 2) = (x – 5) (x – 1)

14) a) m2 + 2m – 24 b) a4 + a2 + 1 c) 16a4 + 4a2b2 + b4
d) a2 – 6ab + 8b2 +2b – 1 (Not: b2 yi bir ekleyip - çıkar )

8) x2 + bx + c şeklindeki üç terimlileri Çarpanlarına Ayırma :
Çarpımları c, toplamları b olan iki sayı arayacağız.
Çarpımları (+) ise işaretleri aynı, Çarpımları (–) ise işaretleri farklı
Toplamları (+) “ “ (+) olur Toplamları (+) “ büyüğü (+) olur
Toplamları (–) “ “ (–) olur Toplamları (–) “ büyüğü (–) olur

15)a) x2 + 5x + 6 b) x2 – 5x + 6 c) x2 + 7x + 6 d) x2 – 7x + 6
e) x2 + 5x – 6 f) x2 – 5x – 6 g) x2 + x – 6 h) x2 – x – 6
ı) x2 – 7x – 18 i) x4 – x2 – 30 k) m2 – 6m – 27 l) x2 – 3xy – 10y2
m) –x2 – 2x + 3 n) x2 – 13x + 30 o) x2 + 2y2– 3xy

9) ax2 + bx + c şeklindeki üç terimlileri Çarpanlarına Ayırma :
ax2 + bx + c = (mx + p) (nx + q)
mx p
nx q (mx.q + nx.q = bx oluyorsa)


16) 6x2 + 7x – 3 = (3x – 1) (2x + 3) olur.
3x – 1 (3x . 3 – 1. 2x = 9x – 2x = 7x olduğundan)
2x + 3
17) a) 3x2 – 2x – 8 b) 3x2 – 7x + 2 c) 2m2 + 5mn – 12n2

d) 8a2 – 2ab – b e) 4x2 + 21x + 5 f) 36a2 – 33ab – 20b2

g) 4m2 + 11m – 3 h) 6a2 + 5a – 6 ı) 12a2 – 8ab – 15b2

i) 2m2 – 10m + 12 k) 3x2 + 3x – 18 l) 3 n2 + 30n + 48

18) a2 + 2ab + b2 = 3 ve c2 + 2ac + 2bc = 6 ise; a + b + c = ?
c2 + 2ac + 2bc = 6 T.T.T
a2 + b2 + c2 + 2ab + 2ac + 2bc = 9(a + b + c)2 = 9 Ç = {-3, 3}

19) 91) x = 4 , y = 2 ise, x5 – 5x4y + 10x3y2 – 10x2y3 + 5xy4 – y5 = ?
a) 16 b) 32 c) 64 d) 128 e) 256
x5 – 5x4y + 10x3y2 – 10x2y3 + 5xy4 – y5 = (x – y)5 = (4 – 2)5= 32
20) 97) , ise; a) 6 b) 8 c)10
a + b yerine ab yazılırsa
(a . b)2 – 2ab – 24 = 0 olur. a .b = y diyelim.
y2 – 2y – 24 = 0 y – 6) (y + 4) = 0 y = - 4 ve y = 6
21) ise, C = 8
olur. (özdeşlikte yerine yazalım )
22) ise; C = 36
olur. (özdeşlikte yerine yazalım )
23) ise; C = 12
olur. (yerine yazalım )
24) işleminin sonucu kaçtır?
123 =153 – 30 ve 183 =153 + 30 yazılırsa
=153 olur


1-)ORTAK ÇARPAN PARANTEZİNE ALMA

A(X).B(X)+A(X).C(X)=A(X).[B(X)+C(X)

Ortak çarpan parantezine almaktaki amaç terim sayısını bire düşürmektir.Böylece ifadelerde sadeleştirme kolaylıkla yapılabilir.

ÖRNEKLER:
1-)ax+bx-cx ifadesini çarpanlara ayıralım!
ax+bx-cx üç terimlisinde ortak çarpan x’tir.buna göre;
ax+bx-cx=x.(a+b-c) olur.

2-)a b c+a b c+a bc ifadesini çarpanlarına ayıralım!
İfade üç terimlidir ve abc ortak çarpandır.O halde;

a b c+ab c+a bc=abc(ab+bc+a c)dir.

2-)GRUPLANDIRARAK ÇARPANLARA AYIRMA
Verilen ifadenin terimleri uygun şekillerde guplara ayrılır ve her grupta ortak bi çarpan bulunmaya çalışılır.

ÖRNEKLER:
1-)ax+bx+ay+by=(ax+bx)+(ay+by)
=x(a+b)+y(a+b)
=(a+b).(x+y)

2-)x-ax+2x-2a=(x-ax)+(2x-2a)
=x(x-a)+2(x-a)
=(x-1).(a-1)
3-)ax-a-x+1=(ax-a)+(-x+1)
=a(x-1)-1(x-1)
=(x-1).(a-1)
3-)İKİ KARE FARKI OLAN İFADELERİN ÇARPANLARA AYRILMASI
a-b=(a-b).(a+b)

ÖRNEKLER:

1-)4x - 9=(2x-3)(2x+3)

2x - 3

2-)(2a-3) - (a-2)=

=(2a-3) – (a-2)
=[(2a-3)-(a-2)].[(2a-3)+(a-2)]
=(2a-3-a+2).(2a-3+a-2)
=(a-1).(3a-5)

3-)(2x-3)-1=

= (2x-3)-1
=[(2x-3)-1].[(2x-3)+1]
=(2x-3-1).(2x-3+1)
=(2x-4).(2x-2)
=4(x-2).(x-1)

4-)(298-98)-200.392 =16 (1994/ÖSS)
2a
= (298-98)(298+98)-200.392 =16
2a
= 200.396-200.392 =16
2a
=200(396-392) =16
2a
=100.4 =16 a=100.4 a=25
a 16a - b İFADESİNİ ÇARPANLARA AYIRMA

a-b=(a-b) (a + a b+a .b +.....+b )
ÖRNEKLER:

x –y ifadesini çarpanlarına ayırınız

1-) x - y = (x-y) (x +x y+x y+xy +y )olur.

2-) x – y ifadesini çarpanlarına ayırınız.

x – y =(x – y)(x +x y+x y +x y + xy +y ) olur.Ncak ikinci çarpan tekrar çarpanlara ayrılır.Bu soruyu aşağıdaki gibi çözersek daha kolay olur.

x – y = (x ) – (y )

= (x -y )(x +y )

=(x-y)(x +xy+y )(x+y)(x –xy +y )

a + b İFADESİNİ ÇARPANLARINA AYIRMA

a- ) n tek ise a + b=(a+b)(a - a .b+a .b -....+b )’dir.
ÖRNEKLER


1-) a – b ifadesini çarpanlarına ayıralım.

a + b=(a+b)(a – a b +a b –ab + b )

b- )n çift ve n=2 (k Z)
p tek ve tam sayı olmak üzere n=p.t ise

a + b=(a ) +(b ) biçiminde yazarak ayrılır ç4-)TAM KARE OLAN İFADELERİN ÇARPANLARA AYRILMASI

(a+b)=a+2ab+b

(a-b)=a-2ab+b
Tam kare üç terimli ifadelerde,iki terimin kare kökleri çarpımının iki katı,üçüncü(ortadaki) terimi vermektedir.

ÖRNEKLER:

1-)x+4x+4 ifadesi tam kare midir?

x + 4x +4=(x+2)

x 2
2.x.2=4x (ortadaki terim) o halde x+4x+4 tam karedir

2-)2000-4000.1999+1999 işleminin sonucu kaçtır?

2000 1999
2.2000.1999=4000.1999 olduğuna göre

2000-4000.1999+1999=(2000-1999)
=1 olur.

5-)ÜÇ TERİMLİYİ ÇARPANLARA AYIRMA

x+bx+c şeklindeki bir üç terimli çarpanlarına ayrılırken, çarpımları c(sabit terim),toplamları b(x in katsayısı) olan iki sayı aranır.

ÖRNEKLER:

1-)x+y+4x-6y+19 ifadesinin en küçük değeri nedir?

x+y+4x-6y+19
=(x+4x+4)+(y-6y+9)+6
=(x+2)+(y-3)+6 (x+2) en az 0 (y-3) en az 0 olacağına göre (x+2)+(y-3)+6 nın en küçük değeri 6 olur.arpanlarına ayrılır.
 

Tema özelleştirme sistemi

Bu menüden forum temasının bazı alanlarını kendinize özel olarak düzenleye bilirsiniz

Zevkini yansıtan rengi seç

Geniş / Dar görünüm

Temanızı geniş yada dar olarak kullanmak için kullanabileceğiniz bir yapıyı kontrolünü sağlayabilirsiniz.

Kenar çubuğunu kapat

Kenar çubuğunu kapatarak forumdaki kalabalık görünümde kurtulabilirsiniz.

Sabit kenar çubuğu

Kenar çubuğunu sabitleyerek daha kullanışlı ve erişiminizi kolaylaştırabilirsiniz.

Köşe kıvrımlarını kapat

Blokların köşelerinde bulunan kıvrımları kapatıp/açarak zevkinize göre kullanabilirsiniz.

Geri